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Abstract—During the recent years, Deep Learning achieved
exceptional performance in various computer vision tasks, paving
auspicious research directions for its application in robotics. A
key component for its exceptional performance is the availability
of sufficient training data. However obtaining such amount of
training data constitutes a challenging task, especially considering
robotics applications. Thus, synthetic data have recently been
regarded as a promising tool to overcoming the data availability
problem. In this work we first build a synthetic human dataset,
and then we train a lightweight model, capable of operating
in real-time for high-resolution input on low-power GPUs, for
discriminating between humans and non-humans. The target of
this work is to assess the generalization of the model trained on
synthetic data, to real data, and also to explore the effect of using
(few) real images in the training phase. As it is shown through
quantitative and qualitative results the use of only few real images
can beneficially affect of the performance of the synthetic-to-real
real-time model.

Index Terms—Synthetic-to-real, human detection, real-time,
heatmaps, robotics.

I. INTRODUCTION

During the recent years, Deep Learning (DL) attained
widespread popularity due to its exceptional performance on
various computer vision tasks [1]–[4]. Its impressive perfor-
mance on computer vision, paved auspicious research direc-
tions for its application in robotics [5]–[8]. A key component
for the successful performance of DL algorithms is the avail-
ability of sufficient training data. State-of-the-art DL models
require millions of training examples [9]. However, obtaining
such amount of training data, especially considering robotics
applications, constitutes a challenging task. Thus, synthetic
data, i.e., data generated artificially rather than by actual
events, have recently been regarded as a very promising tool
to circumvent the data availability problem [10].

The use of synthetic data is accompanied, in general, by
various benefits linked with their low-cost nature and ability to
meet specific requirements imposed by the application, which
may not be feasible in real data. Thus, synthetic data have been
utilized in a wide range of robotics applications, e.g., [11]–
[14]. Their application on robotics applications is associated
with a series of specific advantages. A few of those follow
below: 1) synthetic data provide detailed annotations, since
these are automatically produced, without containing errors
usually occurring in the manual annotation process; 2) they are
usually large in scale, since they are procedurally generated; 3)

they minimize the risk of DL methods deployed in simulation
environments in robotics to exhibit unstable behaviours or
complete failures, due to not having been adapted to the visual
differences between the virtual and the real world data.

A key issue associated with the successful use of synthetic
data in robotics is the gap between the generated data and their
deployment considering real data (that is, synthetic-real gap).
The need for bridging this gap has fueled a new research area
[15]–[17].

In this work, we first build a synthetic dataset for
discriminating between humans and non humans, and use
it to train a lightweight fully convolutional model that is
capable of operating in real-time (about 25 Frames Per
Second - FPS) utilizing a low-power GPU for high resolution
input [18]. The target is to use the model to provide semantic
heatmaps of human presence on real data. That is, we train
the real-time model on the synthetic data, and we test the
model on unseen images that contain real humans, producing
semantic heatmaps, as explained in [18]. A main objective
of this work is to assess the generalization of the model to
real data, and investigate the effect of using real images in
the training phase. As it is demonstrated in the experimental
evaluation the use of even few real training examples can
considerably improve the performance of training merely with
synthetic data, while this is also reflected in the qualitative
evaluation through the produced heatmaps.

The remainder of the manuscript is organized as follows.
Section II presents in detail the proposed synthetic-to-real real-
time human detection model, including the real-time model
and the constructed synthetic dataset. Subsequently, in Sec-
tion III the experiments conducted to assess the performance
the synthetic-to-real real-time model, both quantitatively and
qualitatively, are provided. Finally the conclusions are drawn
in Section IV.

II. REAL-TIME SYNTHETIC-TO-REAL HUMAN DETECTION

In this work we propose a synthetic-to-real real-time model
for discriminating between humans and non humans. The core
objective of this work is to assess the generalization of the
model trained on synthetic data, to real data, and also to
explore the effect of using (few) real images in the training
phase. In the following Sections we describe the real-time
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Fig. 1. Architecture of the real-time VGG-1080p model.

model architecture and the generation of the synthetic human
dataset.

A. Real-Time Model

In this work, we train a fully convolutional lightweight on
synthetic data, that is able to operate in real-time for detecting
humans in real-images, considering high-resolution input on
a low-power GPU. That is, the VGG-1080p model [18] is
used, consisting of five convolutional layers 11K parameters.
The model’s architecture is illustrated in Fig. 1. The model
runs in real-time (i.e., 25.6 FPS) on a Jetson TX-2 for 1080p
input. More specifically, the network is trained on synthetic
images of size 64×64, and then in the test phase, real images
of size 1920 × 1080 are propagated to the network, and for
every window 64× 64 the output of the network at the output
layer is computed, in order to generate the heatmaps of human
presence.

B. Synthetic Human Dataset

The synthetic human dataset consists of real background
images populated with 3D human models in various poses.
PIFu [19], a state-of-the-art deep learning method for gen-
erating realistic 3D human models from single-view images,
is used to generate the human models. The dataset consists
in 133 human models, generated using full-body images of
people from the Clothing Co-Parsing [20] dataset as PIFu’s
input. The Cityscapes [21] dataset which is composed of video
sequences depicting street scenes in various cities, was used to
take background images. The 3D human models are placed on
potential 2D image locations (e.g., pavements, roads), based on
coarse annotations for semantic image segmentation provided
by Cityscapes, so as to manage a higher level of realism.

Since, the target is to train models that can run in real-time
on high-resolution input for producing heatmaps of human
presence [18], the generated images are cropped, and a train
set of 20,000 synthetic cropped images containing humans is
constructed. The train set also contains 20,000 non human
images, cropped from images of the Cityscapes dataset. The
test set consists of 4,000 real images containing humans and
4,000 real images without humans, cropped from video frames
that were gathered by querying YouTube video search engine
with random keywords. The cropped images are of size 64×
64. Since a main objective of this work is to evaluate the effect
of real-human images on the train set, we also construct four
additional versions of the train set where 100, 200, 500, and
1000 out of 20,000 images are real-human images, while the
rest are synthetic. The real human images are derived from

Fig. 2. Sample images of Synthetic Human dataset.

Fig. 3. Classification accuracy using the synthetic-to-real real-time model
trained with 0, 100, 200, 500, and 1000 real images throughout the training
iterations.

the CUHK Person Re-identification datasets [22], [23]. Sample
images of the constructed dataset are provided in Fig. 2.

III. EXPERIMENTAL EVALUATION

A. Evaluation Metrics and Implementation Details

Two sets of experiments were conducted. First, the per-
formance of the synthetic-to-real real-time human detection
model is evaluated using classification accuracy (test accu-
racy) as evaluation metric. Furthermore, the training curves
of classification accuracy throughout the training iterations.
Second, qualitative results are provided using the proposed
synthetic-to-real real-time model. The model is used to pro-
duce heatmaps of human presence on real unseen high-
resolution test images. The models are trained for 200,000
iterations (i.e., 320 epochs) using the mini-batch gradient
descent with mini-batch of 64 samples, and we set the learning
rate to 10−3.

B. Experimental Results

In Table I we provide the classification accuracy of the
synthetic-to-real real-time model trained merely with synthetic
data, and with 100, 200, 500, and 1000 real images. As it is
demonstrated, the model trained only with synthetic humans
achieves sufficient performance, while as we include real
human images, we can accomplish progressively increased
performance. We can notice that even by adding only 100 real
images the performance is remarkably improved. Furthermore,



Fig. 4. Heatmaps on real-image containing humans using the synthetic-to-real real-time model trained with 0, 500, and 1000 real images respectively.

the same remarks are drawn in Fig. 3, where the training
curves of the synthetic-to-real real-time model trained with
0, 100, 200, 500, and 1000 real images throughout the train-
ing iterations, are illustrated. Furthermore, another important
remark is that the more real images we include in the training
procedure, the more stable the performance is. That is, we
notice that when training only with synthetic data, apart from
the poorer performance in terms of classification accuracy,
the model also exhibits unstable performance. This is also
occurs in the case of training with only 100 real images, while
when training with 200, and especially with 500 and 1000 real
images a more stable performance is managed.

Finally, in the second set of experiments, we use the pro-
posed trained model on the synthetic human dataset to generate
heatmaps on unseen high-resolution images that contain real
humans. That is, as previously mentioned, unseen images of
size 1920 × 1080 are fed to the network, and for every

TABLE I
CLASSIFICATION ACCURACY USING THE SYNTHETIC-TO-REAL REAL-TIME

MODEL TRAINED WITH 0, 100, 200, 500, AND 1000 REAL IMAGES.

N. of real images Classification accuracy
0 0.7725

100 0.9546
200 0.9848
500 0.9871
1000 0.9958

window 64 × 64 we compute the output of the network at
the output layer. First, in Fig. 4 we provide the heatmaps
on an unseen high-resolution image, with the model trained
with none, 500, and 1000 real images respectively. As it is
shown, the beneficial effect of including a few real images in
the training , demonstrated in the first set of experiments, is
also reflected in the qualitative results. That is, as it is shown



Fig. 5. Heatmaps on real-images containing humans using the synthetic-to-real real-time model trained with 1000 real images.



in the produced heatmaps, while using only synthetic data,
only a few humans can be detected, when using 1000 real
images in the training, all of them can be detected. Finally, in
Fig. 5, we provide some heatmaps using the synthetic-to-real
real-time model, trained with only 1000 real images. As it is
demonstrated, the model achieves remarkable performance on
detecting real humans.

IV. CONCLUSIONS

In this paper, we dealt with synthetic data considering
robotics applications. More specifically, we first built a syn-
thetic human dataset, and then we trained a lightweight model,
capable of running in real-time for high-resolution input,
for discriminating between humans and non-humans. The
objective of this work is to assess the generalization of the
model trained on synthetic data, to real data, and also to
investigate the effect of using (few) real images in the training
phase. As it is demonstrated in the experimental evaluation,
the use of only few real images can beneficially affect of the
performance of the synthetic-to-real real-time model.
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